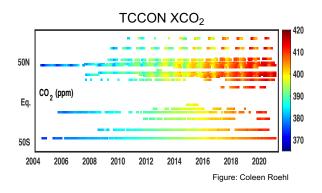
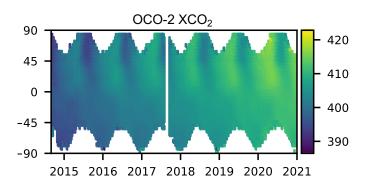


A six year record of OCO-2 XCO₂ measurements

Comparisons against TCCON GGG2014 data

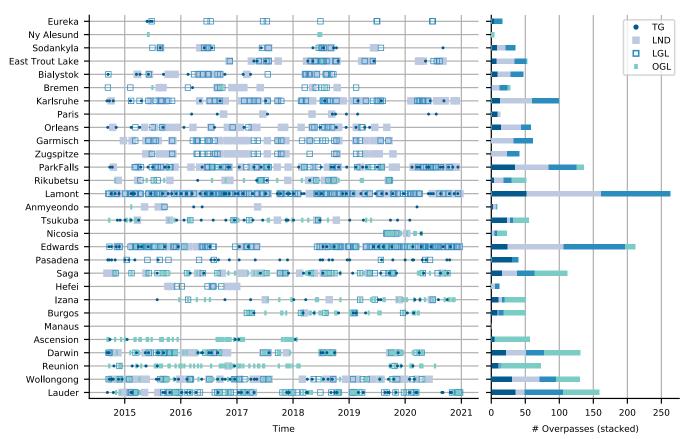

Matthäus Kiel* on behalf of the OCO-2 Validation Team OCO Science Team Telecon – 27 April, 2021


*Jet Propulsion Laboratory, California Institute of Technology

© 2021 California Institute of Technology. US Government sponsorship acknowledged

Datasets

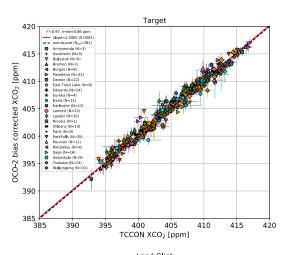
- Six year record of OCO-2 XCO₂ measurements (V10, Sept. 2014 Dec. 2020).
- Same time period covered by TCCON with contributions from 28 sites (GGG2014 data record ended in Dec. 2020; no new GGG2014 data from now on).

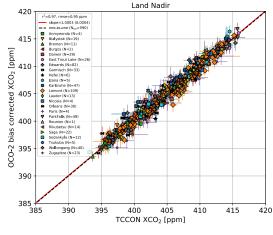


- We expect good agreement because subset of TCCON data is used for QF/BC development.
- Evaluation of OCO-2 against TCCON with regard to site dependent biases, mode and seasonal dependent biases, trends, mean growth rates, and mean seasonal cycle amplitudes.

Collocation of OCO-2 and TCCON measurements

Geometric collocation criteria for land nadir/glint and ocean glint: 2.5° x 5° latitude-longitude box, TCCON XCO₂ (median) ±1h of overpass time, min. 50 good OCO-2 soundings, modified colocation criteria for city sites

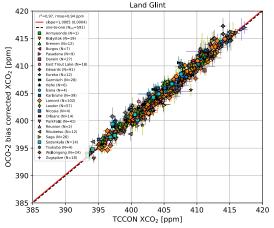


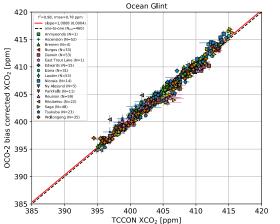

Comparisons to TCCON – Bias Corrected XCO₂

Statistics for mean overpasses

Target

N = 381, r^2 = 0.97 bias = 0.19 ppm rms = 0.86 ppm




Land Nadir

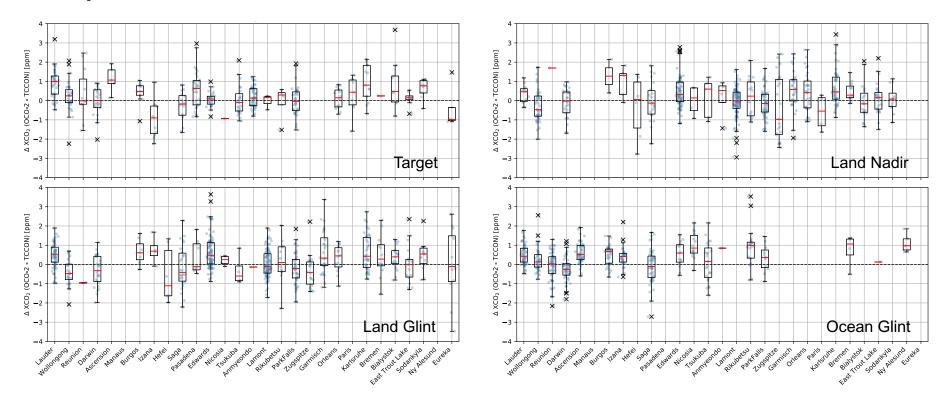
 $N = 590, r^2 = 0.97$ bias = 0.14 ppm rms = 0.95 ppm

Land Glint

N = 591, $r^2 = 0.97$ bias = 0.17 ppm rms = 0.94 ppm

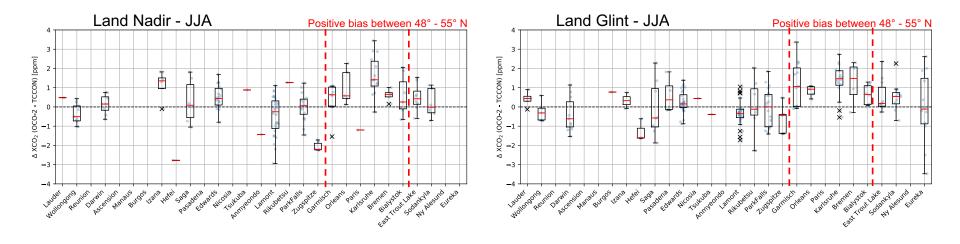
Ocean Glint

 $N = 460, r^2 = 0.98$ bias = 0.30 ppm rms = 0.78 ppm


Comparisons to TCCON

Mode	N_{obs}	r ²	bias [ppm]	V10 rms [ppm]	V9 rms [ppm]
Target	381	0.97	0.19	0.86	0.92
Land Nadir	590	0.97	0.14	0.95	1.01
Land Glint	591	0.97	0.17	0.94	1.00
Ocean Glint	460	0.98	0.30	0.78	0.87

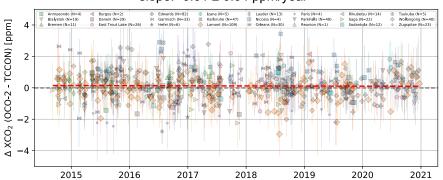
Statistics for mean overpasses


- Average bias over land 0.16 ppm and 0.30 ppm over ocean
- Bias mainly introduced by change of global scaling factor over time and stricter collocation criteria for ocean comparisons (compared to v10 development)
- Significant improvement of rms in v10 over v9 for all observing modes

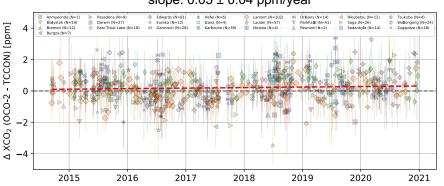
Comparisons to TCCON – Individual Sites

- Bias typically below 1 ppm for most sites
- Some sites exceed bias of 1 ppm; Izaña, Zugspitze (topography), Hefei (lack of data)

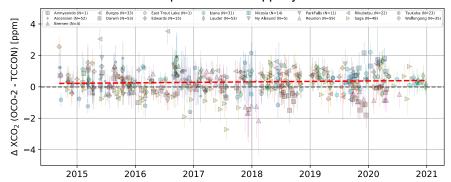
Comparisons to TCCON – Seasonal dependence



- No apparent seasonal bias for Ocean Glint and Target mode data
- Land nadir and land glint measurements indicate light positive bias over continental European sites during NH summer (average 0.75 ppm; single sites exceeding 1 ppm, e.g. Karlsruhe)


Time Trends

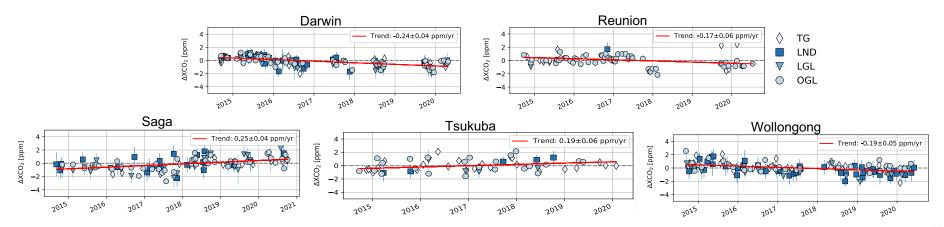
Target slope: 0.01 ± 0.04 ppm/year Ascension (N=5) Burgos (N=9) East Trout Lake (N=8) Izana (N=11) Lauder (N=36) Paris (N=9) Rikubetsu (N=4) Tsukuba (N=23) Δ XCO₂ (OCO-2 - TCCON) [ppm] Białystok (N=9) Pasadena (N=31) Edwards (N=24) Karlsruhe (N=13) Nicosia (N-1) ParkFalls (N=35) Saga (N=16) Wollangong (N=31 2015 2016 2017 2018 2019 2020 2021


Land Nadir slope: -0.01 ± 0.04 ppm/year

Land Glint slope: 0.03 ± 0.04 ppm/year

Ocean Glint slope: 0.03 ± 0.04 ppm/year

Time Trends


None of the methods above suggest a significant time drift in the data. OCO-2 V10 seems to fulfill requirements for remotely-sensed CO₂ products:

- < 0.2 ppm over some unspecified period: GCOS document 154, "Systematic Observation Requirements for Satellite based data products for climate", 2011 update, page 33, product A.8.1.
- < 0.15 ppm/year: GCOS document 200, "Global Observing System for Climate: Implementation Needs", 2016.
- < 0.2 ppm/year (Goal), < 0.5 ppm/year (Threshold): GHG-CCI User Requirements Document version 3.0.
- These requirements are very generous, 0.01 0.02 ppm/year is probably more desirable.

Time Trends

None of the methods above suggest a significant time drift in the data. OCO-2 V10 seems to fulfill requirements for remotely-sensed CO₂ products:

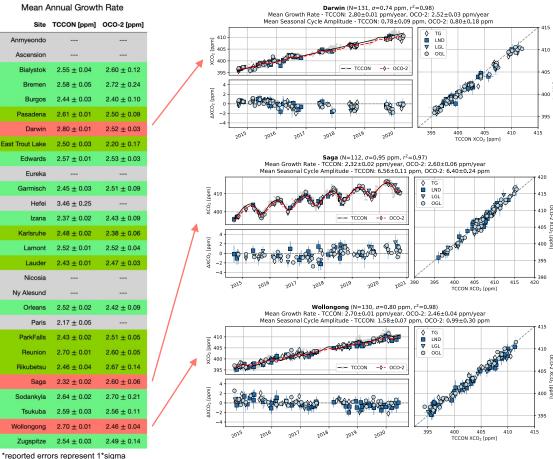
- < 0.2 ppm over some unspecified period: GCOS document 154, "Systematic Observation Requirements for Satellite based data products for climate", 2011 update, page 33, product A.8.1.
- < 0.15 ppm/yr: GCOS document 200, "Global Observing System for Climate: Implementation Needs", 2016.
- < 0.2 ppm/yr (Goal), < 0.5 ppm/yr (Threshold): GHG-CCI User Requirements Document version 3.0.
- These requirements are very generous, 0.01 0.02 ppm/year is probably more desirable.
- XCO₂ drifts are apparent over some individual sites: Darwin, Reunion, Tsukuba, Saga, Wollongong.

Mean Growth Rate and Seasonal Cycle Amplitude

• The seasonal cycle of XCO₂ can be parameterized as a skewed sine wave with an upward trend (Lindqvist et al., 2015):

$$f(t) = a_0 + a_1 t + a_2 \sin \left(\omega \left[t - a_3\right] + \cos^{-1} \left[a_4 \cos \left(\omega \left[t - a_5\right]\right)\right]\right)$$

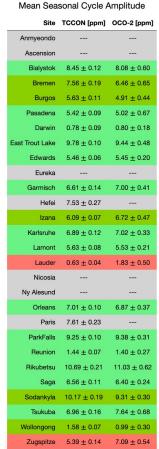
- The first two terms fit for a linear trend (average growth rate).
- 2*|a₂| denotes the peak-to-peak amplitude of the sine wave and is used to define the seasonal cycle amplitude.
- The method cannot be used to quantify interannual variability but it gives an average seasonal cycle amplitude and an average growth rate pretty conveniently.

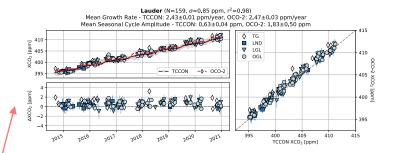

For our analysis:

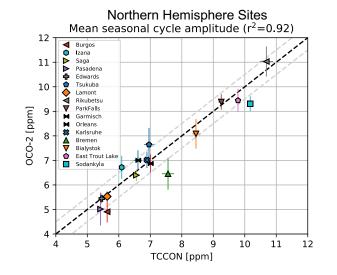
- Only possible if we combine OCO-2 data from all modes for individual sites, otherwise the temporal coverage is too sparse to make any statements about growth rate and seasonal cycle amplitude.
- Some additional OCO-2 requirements for a good fit:
 - Timeseries must cover at least three years with a minimum of two data points per year (for a good growth rate fit)
 - Minimum of three datapoints within ± 45 days of three local minima and maxima (for a good seasonal cycle fit)

Mean Annual Growth Rate

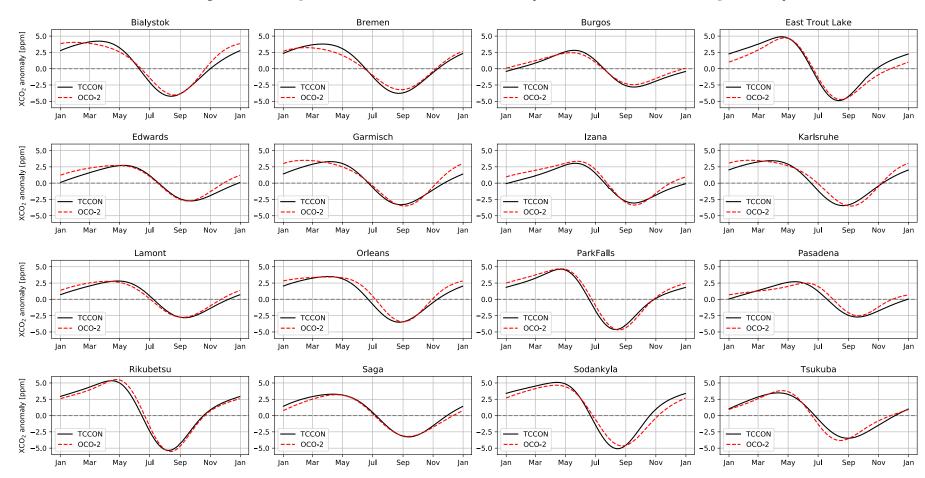
- For most sites, the mean annual growth rate agrees for TCCON and OCO-2 within 2*sigma.
- OCO-2 underestimate the mean annual growth rate for 10 sites by 0.0 – 0.3 ppm (~ 0.1 ppm).
- OCO-2 overestimate the mean annual growth rate for 8 sites by 0.0 – 0.2 ppm (~ 0.1 ppm).
- TCOON and OCO-2 mean annual growth rates disagree for Darwin, Saga, and Wollongong.

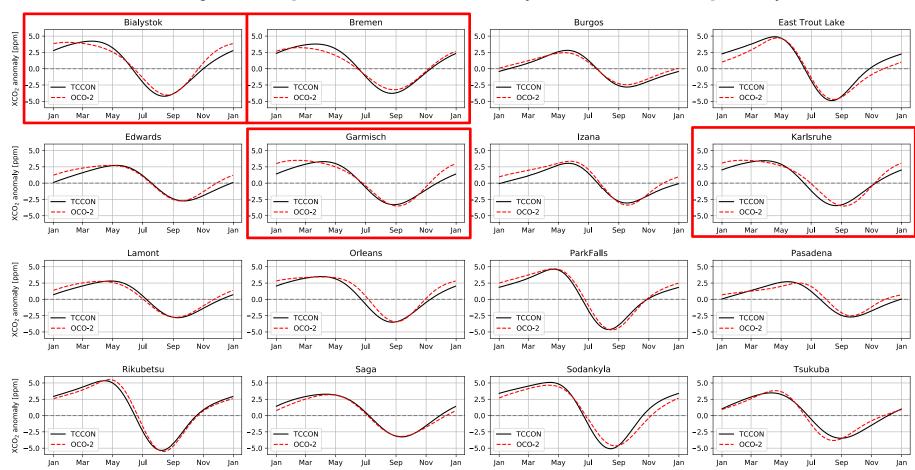




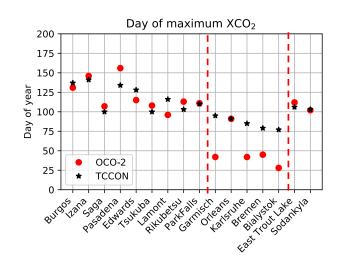

Mean Seasonal Cycle Amplitude

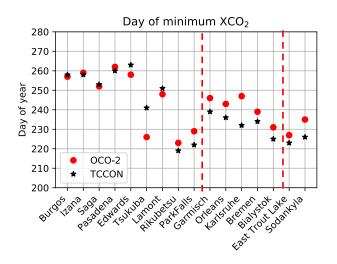
- Fit function works best for NH sites
- For most sites, the mean seasonal cycle amplitude agrees for TCCON and OCO-2 within 2*sigma.
- OCO-2 underestimates the mean seasonal cycle amplitude over 12 sites (~ 0.3 ppm)
- OCO-2 overestimates the mean seasonal cycle amplitude over 7 sites (~ 0.6 ppm)
- TCOON and OCO-2 mean seasonal cycle amplitude disagrees for Lauder and Zugspitze.





*reported errors represent 1*sigma


Mean Seasonal Cycle Amplitude – Detrended (Northern Hemisphere)



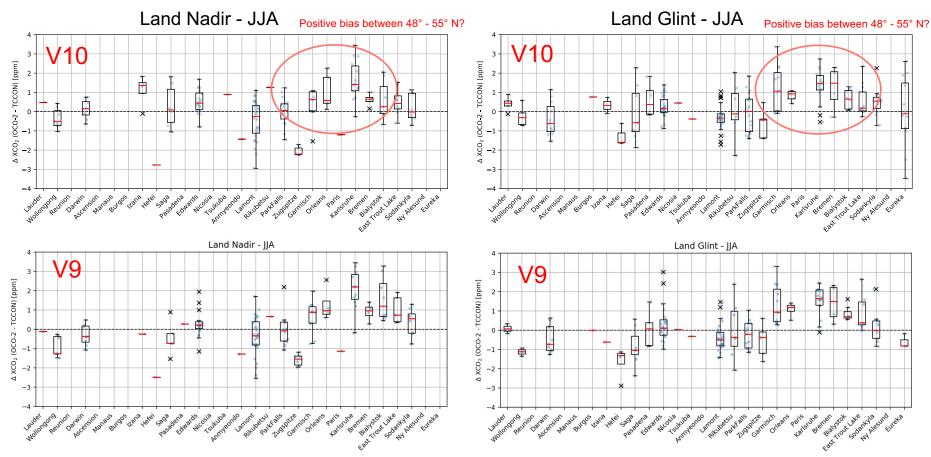
Mean Seasonal Cycle Amplitude – Detrended (Northern Hemisphere)

Mean Seasonal Cycle Amplitude (Northern Hemisphere)

- For most NH sites, day of maximum XCO₂ for TCCON and OCO-2 within several days
- OCO-2 XCO₂ maximum early for European continental sites (~ 45 days)
- Range of days of minimum XCO₂ more restricted
- OCO-2 XCO₂ minimum late for European continental sites (~ 7 days)

High Level Summary

- Six year record of OCO-2 XCO₂ measurements (V10, Sept. 2014 Dec. 2020). Same time period covered by TCCON with contributions from 28 sites (GGG2014 data record ended in Dec. 2020; no new GGG2014 data from now on).
- Overall good agreement against TCCON (bias over land 0.16 ppm and 0.30 ppm over ocean).
- Significant improvement of rms in v10 over v9 for all observing modes.
- OCO-2 appears biased high (~0.75 ppm) for LND and LG for continental European sites in NH summer
- No significant drift in XCO₂ against TCCON but drifts apparent over individual sites: Darwin, Reunion, Tsukuba, Saga, Wollongong.
- For most sites, the Mean Annual Growth Rate and Seasonal Cycle Amplitude for TCCON and OCO-2 agree within 2*sigma.
- OCO-2 underestimates the day of maximum XCO₂ over continental European sites (~ 45 days) and overestimates day of minimum XCO₂ (~ 7 days)


THANK YOU!

jpl.nasa.gov

Additional Slides

Comparisons to TCCON – Seasonal dependence

